Q4 What Are My "Minimum Life-Cycle Cost" CIP And O&M Strategies"?

AMPLE

Asset Management Program Learning Environment

Recapping Our Progress

• We have our asset register ...

- We have assessed condition...
- We understand residual life and the approximate probability of failure...(estimated)
- We understand criticality and have a rating for the Business Risk Exposure (BRE)...
- Now we need to predict the future costs of the facility...
- What do we need to spend to meet our LOS performance?

Core AAM Program Process Tools

PARSONS / GHD

AAM Focuses on Three Fundamental Management Decisions:

- What are my work crews doing, where are they doing it – and why?
- What CIP projects should be done and when?
- When to repair, when to refurbish and when to replace?

These decisions typically account for *at least* 80% of a Utility's annual expenditures!

The Asset Decision Framework

The Big Picture

- "Whole portfolio"
 perspective
 - Trends
 - "Macro forces"
- Policy framework
- Budget arena

The Micro View

- Event-based
- Specific asset focus
- Case-by-case decision points

Repair? Renew? Replace?Augment?

Determining Lowest-Cost Action

Priority order

- Assets with a high probability or history of failure (reliability).
- 2 Assets with a high business risk cost (consequence).
- 3 Assets where rehabilitation intervention is beneficial.
- Assets where more appropriate maintenance is beneficial (eg. with high unplanned maintenance).

Infrastructure Assets — Strategic Planning

PARSONS / GHD

So, What do we mean by "...minimum life cycle cost strategies?"

- The fundamental asset management options available to the management team include:
 - Do nothing ("Zero-based' strategy)
 - Status quo
 - Repair
 - "Run-to-failure"
 - Preventive-based
 - Condition (predictive)-based
 - Refurbish/Rehabilitate
 - Replace
 - Decommission/non-asset-based
- Which *strategy* for each asset?
- Combinations over life cycle

What Do We Mean By "Alternative Treatment Options?"

Our "Decision Rule"

Maintenance Option 1..N

Renewal Option 1..N

"Search for the Alternative Treatment with the lowest average annual PV."

Putting it all together – "ORDM"

- "ORDM" Optimal Renewal/Replacement Decision-making
- Treatment (management) options:
 - Continued maintenance
 - Renewal
 - Replacement
 - Non-asset solutions
- Decision rule: seek "treatment" option with lowest cost ("lowest present value of average annual economic costs)

Articulating "Costs"*

Direct Costs to the Government Organization

- Repair and return to service costs
 - Service outage mitigation costs
 - Utility emergency response costs
- Public safety costs
- Admin & legal costs of damage settlements
- (Lost product costs)

Direct Customer Costs

- Property damage costs (including restoration of business)
- Service outage costs
- Service outage mitigation and substitution costs
- Access impairment and travel delay costs
- Health damages

Community Costs

- Health/safety/welfare
 - Disease and illness mitigation
 - Emotional strain/welfare
- Environmental impact
 - Pollution, erosion, sedimentation
 - Destruction of/damage to habitat
- "Attractability" (tourist, economic)

Optimal Renewal Decision Making Options

NON-ASSET OPTIONS...

<u>M</u>ain

Overlay Prob. of Failure Curve

<u>M</u>ain

-

Overlay Prob. of Failure Curve

<u>M</u>ain

Overlay Prob. of Failure Curve

Optimal Replacement Decision Theory

Importance Of The Work Order

WORK ORDER

ASSET DETAILS

- TYPE
- CATEGORY
- SIZE
- CONDITION
- PERFORMANCE HISTORY

ASSET LINKED COSTS ALLOW SIGNIFICANT ANALYSIS:

- 1. What type of sewer suffers the greatest number of blockages caused by tree roots?
- 2. How many failures are experienced by water mains of different ages in different ground conditions?

Importance Of The Work Order

TELLS US PLANNED (PM) OR UNPLANNED (UM) MAINTENANCE COSTS

> MONITORS PERFORMANCE REPORTS ON COST OVERRUNS

TELL US ACTUAL DIRECT COSTS OF ACTIVITY

TELL US THE ACTIVITY USED NECESSARY FOR ACTIVITY ANALYSIS

USEFUL IN FAILURE MODE ANALYSIS

NECESSARY FOR CAUSAL ANALYSIS

INDIRECT COSTS ON BUSINESS IMPACT ON CUSTOMERS EFFECTS ANALYSIS

CAUSE OF COST OVERRUNS OR POTENTIAL COST REDUCTIONS

Predicting Maintenance Costs

PARSONS / GHD

Linking Condition & Probability Of Failure

Linking Condition & Probability Of Failure

Effective Lives (Years)	Condition Rating / Residual Life					
Asset Type	Effective Lives	1	2	3	4	5
Civil	75	75	60	45	30	15
Pressure Pipework	60	60	48	36	24	12
Sewers	100	100	80	60	40	20
Pumps	40	40	32	24	16	8
Motors	35	35	28	21	14	7
Electrical	30	30	24	18	12	6
Controls	25	25	20	15	10	5
Building Assets	60	60	48	36	24	12

As condition deteriorates, residual life falls (not necessarily linear)

Linking Condition, Age & Probability Of Failure

Condition Decay = $(LTD/EL)^N$ Where: LTD = Life to Date EL = Effective Life And N =: Major linear assets = 4 Architectural passive assets = 3 Mech/elec/dynamic assets = 4

ORDM - Future Costs

ORDM - Future Costs

Non-Critical Assets Direct Repair Costs Significantly Exceed Indirect Consequences Of Failure

ORDM - Timing The Renewal

OCSD Hierarchy – Plant Assets

Microsoft Access - [frm_ASSETS : Form]

Select Asset Type

<u>File Edit View Insert Format Records Tools Window Help</u>

⊕ 1 COLLECTION (Areas 50-59) ASSET DETAILS Sub Type DFT MISC (Non-Plant) (Area 90) Unique ID 13010 qry_plt_equipment_information.struct_1 Image: Motused - Interplant (Areas 30-33) Туре WR. w7_plt_equipment_information.equipment_type_code OWER SUPPLY 🗄 - 1 PLANT 1 (Areas 10-19) Sub Type 🗄 – 1 PLANT 2 (Areas 20-29) 2 20_PLANT #2 PRELIMINARY TREATMENT 2 21 PLANT #2 PRIMARY TREATMENT LEVEL of SERVICE E 2 22 PLANT #2 SECONDARY TREATMENT Size 120 w7_plt_instrument_information.voltage 🗄 3 22A GENERAL INCH Size Unit VOLTS ω7 plt instrument information.override volts Ė~ 4 _22A-NONE 5 22A-201 EXHAUST FAN, JB-1 METER PIT Capacity 5 22A-202 MODEM, POWER BLDG A PLC Cap. Unit E~ 5 22A-203_POWER SUPPLY, 24VDC LOOP, POWER BLDG A Performance E 🚹 POWER SUPPLY ASSET REHABILITATION 6 22AEY203_POWER-SUPPLY, 24VDC LOOP, PLC IN POWER BLL Last Rehab No. 113010 POWER SUPPLY, DC 5 22A-204 POWER SUPPLY, FIBER OPTIC MODEM, POWER BLDG A Rehab Con 5 22A-250_JB-1 GATE AND CONTROLS (OLD), SECONDARY TREATMEN Eff Life 100% 5 22A-251_JB-1 GATE AND CONTROLS (NEW), SECONDARY TREATMEN Min Cost 100% 5 22A-252 SAMPLER, JB-1 EFFLUENT JUNCTION BOX Diff Factor 5 22A-260 JB-8 GATE AND CONTROLS, SECONDARY TREATMENT ASSET REPLACEMENT 5 22A-262 SAMPLER, JB-4 JUNCTION BOX, SECONDARY TREATMENT 5 22A-263_PH ANALYZER, JB-4, PRIMARY EFFL PS JUNCTION BOX Install Date 3 228_PRIMARY EFFLUENT PUMP STATION Condition 3 22C_EAST AERATION FACILITIES E-H Empty 3 22D_WEST AERATION FACILITIES A-D Max Pot Life 50 years 3 22E MICRO-FILTRATION FACILITIES Unit Rate \$1 3 22F EAST SECONDARY CLARIFIERS G-L 3 22G WEST SECONDARY CLARIFIERS A-F. Diff Factor 3 22I_SLUDGE THICKENER FACILITY RISK 2 23_PLANT #2 OXYGEN GENERATION FACILITY PoF 2 24_PLANT #2 EFFLUENT DISPOSAL CoF 2 25_PLANT #2 SOLIDS HANDLING 2 26 PLANT #2 CENTRAL GENERATION 2 27 PLANT #2 UTILITY UNITS 2 28 PLANT #2 ELECTRICAL DISTRIBUTION Form View

N R L

Asset Type Selection

Asset Type Selection

	Se	elect All	Upselect All	Apply	Cancel		-	
		ACCC HII	Onsciect Hill	прріу				
	TYPE		CRIPTION		CURTYDE			
Kana l	ITPE	TTPE DES	DERIPTION		SUBITPE	SUBTTPE DESCRIPTION		
×	AC	AIR COND			DFT			
	AHU	AIR HAND	LER UNIT		DFT	DEFAULT SUB-TYPE		
	ALRM	ALARMS, AUDIO-VISUAL AND SOFTWARE			DFT			
	ANA							
	APR	ASPIRATOR						
	AIMZ	ATOMIZER						
	BAT	BATTERIES			DFT			
	BIC	BICYCLE				DEFAULT SUB-TYPE		
	BKR	BREAKER			DFI			
	BLR	BOILER						
	BLIP	BELTPRESS			DFI			
	BLWR	BLOWER						
	BRSC	BARSCREEN			DFI			
		CALIBRATOR						
		CAPACITORS						
		CARS						
	CART	CART,ELECTRIC						
	CEN			DFT				
	CFR							
	CHIL	CHILLER		DFT				
	CHR	CHARGER, BATTERY						
				DFT				
		COLLECTOR, CLARIFIER SWEEP UNIT						
	CMP	COMPRESSOR		DFT				
		CONDENSER						
	CON		LER					
	CRN							
			TOWER (AC)					

Asset Type Model

TYPE PREVIOUS Type Description No.of Sub-Types Sub-Type PREVIOUS Sub-Type Description	ASSET TYPE ATTRIE		
REP		MAINTENANCE	
Value by Size Default Size Size Unit Code Use Size Limit Size Limit Upper Size Limit Lower Use Length	▼ INCH ▼ 200 50	Include Main Costs? Average Main Cost 3.00% Main Curve Increase (non-linear) Main Curve Factor 2 OPERATIONS	
Use Depth Depth Min Depth Factor		Include Op Costs? Average Op % 1.00% Op Curve Increase (non-linear) Op Curve Factor 1.5	
Unit Cost Difficulity Factor Condition Curve Condition Curve Factor	\$150.00 per INCH 2 Decay (non-linear) 🔽 1.5	RISK and INTERVENTION PoF Curve Exp with Con PoF Curve Factor I Nicitizer PaF	
REHA	BILITATION	Maximum Port 0.1	
Rehabilitate? Effective Life % Min Rehab Cost % Difficulity Factor Cost Curve Cost Curve Factor Condition Curve Condition Curve Factor		Minimum Condition	

Asset Renewal Decision Model

