Q1b. What Condition Is It In And What Is Its Remaining Physical Life? AMPLE Asset Management Program Learning Environment

Core AAM Program Process Tools

BAP Condition / Performance Assessment

- We thoroughly understand and have recorded the current levels of service in terms of quantity and quality of service including :
 - Condition
 - Function / size /type (fit for use)
 - Regulatory requirements
 - Reliability
 - Repair response times
- We report this performance against our required levels of service annually ...

BAP Condition / Performance Assessment

 We monitor condition, performance and cost to enable us to predict the failure mode by which the asset will fail to (or cause to) deliver the service level required from the asset.

Definitions

• Renewal:

- Repair normal periodic maintenance, minor in nature, anticipated in the normal operation of the asset; no enhancement of capabilities
- Refurbish/Rehabilitation— replacement of a component part or parts or equivalent intervention sufficient to return the asset to level of performance above minimum acceptable level; may include minor enhancement of capabilities; typically funded out of capital budgets
- Replace
 - Without enhancement substitution of an entire asset with a new or equivalent asset without enhancement of capabilities
 - With enhancement substitution of an entire asset with a new or equivalent asset with enhanced capabilities
- Non-Asset Solutions

The Four Core "Failure Modes"

PARSONS / GHD

Typical Condition Assessment Techniques

- 1. Visual inspection
- 2. Non-destructive testing
- 3. Wear products/contaminants testing
- 4. Vibration analysis
- 5. Performance analysis
- 6. Current & temperature analysis

Methods to Inventory and Document Structural Conditions:

- Pump Station Inspection
- Manhole Inspection
- Smoke Testing
- Dye Testing
- Video Inspection (CCTV)
- Lamping
- Sonar
- Global Positioning System
- Building Inspection
- Ground Penetrating Radar

Example: Early Forms of Condition Definitions and Ranking Criteria

Condition Class 2: Condition Class 3:	repaired immediately Damage to be repaired within 1 year Damage to be repaired within	To meet emergency situations To meet legal requirements B. Necessary repairs To eliminate safety hazards and code violations To meet contractual obligations To perform required renovations or repair
Condition Class 4:	3 years Damage to be repaired within 7 years	 Desired repairs To replace equipment To extend or enhance service To match funds D. Ongoing repairs
Condition Class 5:	Damage to be repaired in the course of other construction work	To continue work in progress E. Deferrable repairs To perform non-essential renovations/improvements To perform projects with questionable need or with
Condition Class 6:	No damage	timing problems

Example: Collection System Rating Structure

Pipe Rise/Joint Offset

- 1. Minor not critical
- 2. Moderate not critical to flow pattern
- 3. Significant possible infiltration source
- 4. Severe pipe offset impeded/obstructed flow, probable infiltration source

Pipe Dip

- 1. Length 0-10 feet not critical
- 2. Length 11-20 feet causes minor velocity reductions
- 3. Length 21-30 feet causes solids to settle in pipe
- 4. Length >31 feet can cause significant solids buildup

Joint Infiltration

- 1. Slow drip
- 2. Steady drip
- 3. Continuous flow moderate
- 4. Continuous flow severe
- Mineral Buildup (at joint)
 - Deposit on wall without any noticeable flow restriction not critical
 - 2. 0.25 Reduction in pipe diameter, some flow restriction
 - 3. 0.25-0.5 Reduction in pipe diameter, significant flow restriction
 - 4. >0.5 Reduction in pipe diameter, camera unable pass severe flow Reduction
- Laterals with Roots (house lateral)
 - 1. Some root penetration no blockage
 - 2. More established root presence minimal blockage
 - 3. 0.5 of lateral is blocked possible infiltration and flow restriction
 - 4. Near total blockage probable infiltration and flow restriction

Joints with Roots

- 1. Some root penetration no blockage
- 2. More established root presence minimal blockage
- 3. 0.5 of pipe blocked possible infiltration and flow restriction

4. Near total blockage – probable infiltration and flow restriction
Pipe Break

- 1. Minor Break no structural impairment
- 2. Break with separation structural impairment not immanent
- 3. Break with separation/partial collapse immanent structural failure
- 4. Severe breakage requiring immediate attention to maintain flow
- Debris Blocking Pipe
 - 1. Minor debris minimal flow restriction
 - 2. Moderate debris minor flow restriction
 - 3. Significant debris moderate flow restriction
 - 4. Severe debris near total flow restriction

• Pipe Cracks

- 1. Hairline no structural impairment
- 2. Crack with separation structural impairment not immanent
- 3. Crack with separation/partial collapse immanent structural failure

4. Severe crack requiring immediate attention to maintain flow Lateral protrusion

- 1. <1" minimal flow restriction
- 2. >1" moderate but not critical to flow pattern
- 3. 0.5-0.75 full pipe blocked severe flow restriction
- 4. 0.75 full pipe blocked severe flow restriction

Emergent "National" Standards

Hole (H)

Distance	Video	9	ode	Continuous		v	alue		Joint	Circum	ferential dion
(feet)	Ref	Group Descrip	Modifier / severity	- Generat	S/M/	lec 1st	hes 2nd	*		At/ from	To
309.4		н								07	12
312.0		FC								12	04
312.0		FL								12	
312.0		FL								08	

"PACP" - Pipe Assessment Certification Program *Structural defect scores - Pipe sewers

Defect	MSCC Code	Description	Score
Longitudinally	OJM	Medium < 1*pipe thickness	1
displaced joint /	OJL	Large > * pipe thickness	2
Open joint		if soil visible grade as a hole	165
Dedially	JDM	Medium < 1* pipe thickness	1
riacially	JDL	Large > 1* pipe thickness	2
displaced joint		> 10% diameter & soil visible	80
Cracked	CC	Circumferential	10
	CL	Longitudinal*	10
		Complex*	40
		Helical*	40
	CM		
Fractured	FC	Circumferential	40
	FL	Longitudinal*	40
		Complex*	80
		Helical*	80
	FM		
Broken	в		80
Hala		Radial extent <1/4	80
nue		Radial extent 1/4+	165
Collapsed	x		165

*Abstract from Sewerage Rehabilitation Manual (Fourth Edition)

National Association of Sewer Service Companies (NASSCO) Water Research Centre (WRc), Manual of Defect Classification

International 2001, Nac. 200

PARSONS / GHD

KA-TE Robot

AP 20: CALC. #1 HOT VALVE EAST SIDE

SHOCK PULSE ANALYSIS

PARSONS / GHD

Condition Assessment

Condition Rating Example

Condition Assessment

Condition Rating	Description	Maintenance Level	Degree of Replacement
0	NEW	Normal	0%
1	PERFECT/EXCELLENT CONDITION	Normal	0%
2	MINOR DEFECTS ONLY	Minor	5%
3	BACKLOG MAINTENANCE REQUIRED	Significant	10-20%
4	REQUIRES MAJOR RENEWAL	Renew	20-40%
5	ASSET ALMOST UNSERVICEABLE	Replace	>50%

N					6
- W, 1	8. (8.	1			
	-		1.5	61	1

4.1

4.3

4.5

4.7

4.9

5.0

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Condition Assessment Intermediate Method

Develop Method Related To Distress Of Assets

Reporting on Asset Portfolios

Portfolio Condition

Expanding This To The Whole Asset System Cost Effectively

- "We cannot *afford* to understand the condition of all our assets!"
- "Do we *really* need to understand this ?"
- Yes, we need to be confident in what we tell our Board and stakeholders.
- "Can't we do it smarter?"
- Yes we can ...

Actuarial / Risk Based Condition Assessment Program

- Understand causes of decay
- Understand risk (criticality) of assets
- Determine risk drivers
- Rank assets against drivers
- Use actuarial sampling techniques to determine sample needed to derive necessary confidence level
- Complete sample till confidence level is confirmed

Advanced CAP: Actuarial Sampling

Key Variables (4 No.):

Sewer asset profile consists of 20,000 pipelines (manhole lengths)

Actual Savings Achieved

Inasth	OPTION	COSTS / SAVINGS ACHIEVED
	1. ORIGINAL PRACTICE	\$ 4.48 Million
	3. ACTUARIALLY BASED	\$ 0.74 Million

Note!

- Condition assessment is not an end in itself, but is a means to an end
- The "end" is to determine "remaining useful life"
- "Good", "Fair", "Poor" type ratings have little utility unless they lead to an effective estimate of remaining useful life

The remaining useful life of an asset is what we have left to try to manage

Exercise Number 1b

- Help Tom develop an understanding of the physical condition of the assets and components in the pump station :
- Use your asset register
- First, let's add data about the date the assets were acquired, their original cost and the "class" of the asset ...

Exercise Number 1b

- Help Tom develop an understanding of the physical condition of the assets and components in the pump station :
- use your asset register
- rate their condition using the assessment table shown in the handout ...
- The spreadsheet will then calculate the residual life and the % asset consumed...

Sheet B on the Exercise Spreadsheet

Effective Lives (Years)

Asset Type	Effective Lives			
Civil		75		
Pressure Pipework		60		
Sewers		100		
Pumps		40		
Motors		35		
Electrical		30		
Controls		25		
Building Assets		60		

This is calculated based on class of asset you assign – you need to modify if it is not a reasonable estimate

Sheet B on the Exercise Spreadsheet

Effective Lives (Years)	Condition Rating / Residual Life					
Asset Type	Effective Lives	1	2	3	4	5
Civil	75	75	60	45	30	15
Pressure Pipework	60	60	48	36	24	12
Sewers	100	100	80	60	40	20
Pumps	40	40	32	24	16	8
Motors	35	35	28	21	14	7
Electrical	30	30	24	18	12	6
Controls	25	25	20	15	10	5
Building Assets	60	60	48	36	24	12

This is calculated – you only have to rate condition